Copied to
clipboard

G = C24⋊Dic7order 448 = 26·7

1st semidirect product of C24 and Dic7 acting via Dic7/C7=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C241Dic7, C73C2≀C4, (C2×C28).3D4, (C23×C14)⋊3C4, (C2×D4).7D14, C28.D42C2, C22≀C2.1D7, C22⋊C41Dic7, C23⋊Dic72C2, (D4×C14).5C22, (C22×C14).14D4, C23.5(C7⋊D4), C23.1(C2×Dic7), C14.19(C23⋊C4), C2.4(C23⋊Dic7), C22.12(C23.D7), (C7×C22⋊C4)⋊1C4, (C2×C4).5(C7⋊D4), (C7×C22≀C2).1C2, (C22×C14).13(C2×C4), (C2×C14).94(C22⋊C4), SmallGroup(448,93)

Series: Derived Chief Lower central Upper central

C1C22×C14 — C24⋊Dic7
C1C7C14C2×C14C22×C14D4×C14C23⋊Dic7 — C24⋊Dic7
C7C14C2×C14C22×C14 — C24⋊Dic7
C1C2C22C2×D4C22≀C2

Generators and relations for C24⋊Dic7
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e14=1, f2=e7, ab=ba, eae-1=ac=ca, ad=da, faf-1=abcd, bc=cb, ebe-1=bd=db, fbf-1=bcd, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=e-1 >

Subgroups: 396 in 94 conjugacy classes, 23 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, C14, C14, C22⋊C4, C22⋊C4, M4(2), C2×D4, C2×D4, C24, Dic7, C28, C2×C14, C2×C14, C23⋊C4, C4.D4, C22≀C2, C7⋊C8, C2×Dic7, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C2≀C4, C4.Dic7, C23.D7, C7×C22⋊C4, C7×C22⋊C4, D4×C14, D4×C14, C23×C14, C28.D4, C23⋊Dic7, C7×C22≀C2, C24⋊Dic7
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, Dic7, D14, C23⋊C4, C2×Dic7, C7⋊D4, C2≀C4, C23.D7, C23⋊Dic7, C24⋊Dic7

Smallest permutation representation of C24⋊Dic7
On 56 points
Generators in S56
(8 39)(9 33)(10 41)(11 35)(12 29)(13 37)(14 31)(22 36)(23 30)(24 38)(25 32)(26 40)(27 34)(28 42)
(1 45)(2 53)(3 47)(4 55)(5 49)(6 43)(7 51)(8 39)(9 33)(10 41)(11 35)(12 29)(13 37)(14 31)(15 48)(16 56)(17 50)(18 44)(19 52)(20 46)(21 54)(22 36)(23 30)(24 38)(25 32)(26 40)(27 34)(28 42)
(8 25)(9 26)(10 27)(11 28)(12 22)(13 23)(14 24)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)
(1 19)(2 20)(3 21)(4 15)(5 16)(6 17)(7 18)(8 25)(9 26)(10 27)(11 28)(12 22)(13 23)(14 24)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 28)(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 15)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(29 44 36 51)(30 43 37 50)(31 56 38 49)(32 55 39 48)(33 54 40 47)(34 53 41 46)(35 52 42 45)

G:=sub<Sym(56)| (8,39)(9,33)(10,41)(11,35)(12,29)(13,37)(14,31)(22,36)(23,30)(24,38)(25,32)(26,40)(27,34)(28,42), (1,45)(2,53)(3,47)(4,55)(5,49)(6,43)(7,51)(8,39)(9,33)(10,41)(11,35)(12,29)(13,37)(14,31)(15,48)(16,56)(17,50)(18,44)(19,52)(20,46)(21,54)(22,36)(23,30)(24,38)(25,32)(26,40)(27,34)(28,42), (8,25)(9,26)(10,27)(11,28)(12,22)(13,23)(14,24)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,19)(2,20)(3,21)(4,15)(5,16)(6,17)(7,18)(8,25)(9,26)(10,27)(11,28)(12,22)(13,23)(14,24)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,15)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,44,36,51)(30,43,37,50)(31,56,38,49)(32,55,39,48)(33,54,40,47)(34,53,41,46)(35,52,42,45)>;

G:=Group( (8,39)(9,33)(10,41)(11,35)(12,29)(13,37)(14,31)(22,36)(23,30)(24,38)(25,32)(26,40)(27,34)(28,42), (1,45)(2,53)(3,47)(4,55)(5,49)(6,43)(7,51)(8,39)(9,33)(10,41)(11,35)(12,29)(13,37)(14,31)(15,48)(16,56)(17,50)(18,44)(19,52)(20,46)(21,54)(22,36)(23,30)(24,38)(25,32)(26,40)(27,34)(28,42), (8,25)(9,26)(10,27)(11,28)(12,22)(13,23)(14,24)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,19)(2,20)(3,21)(4,15)(5,16)(6,17)(7,18)(8,25)(9,26)(10,27)(11,28)(12,22)(13,23)(14,24)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,15)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,44,36,51)(30,43,37,50)(31,56,38,49)(32,55,39,48)(33,54,40,47)(34,53,41,46)(35,52,42,45) );

G=PermutationGroup([[(8,39),(9,33),(10,41),(11,35),(12,29),(13,37),(14,31),(22,36),(23,30),(24,38),(25,32),(26,40),(27,34),(28,42)], [(1,45),(2,53),(3,47),(4,55),(5,49),(6,43),(7,51),(8,39),(9,33),(10,41),(11,35),(12,29),(13,37),(14,31),(15,48),(16,56),(17,50),(18,44),(19,52),(20,46),(21,54),(22,36),(23,30),(24,38),(25,32),(26,40),(27,34),(28,42)], [(8,25),(9,26),(10,27),(11,28),(12,22),(13,23),(14,24),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42)], [(1,19),(2,20),(3,21),(4,15),(5,16),(6,17),(7,18),(8,25),(9,26),(10,27),(11,28),(12,22),(13,23),(14,24),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,28),(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,15),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(29,44,36,51),(30,43,37,50),(31,56,38,49),(32,55,39,48),(33,54,40,47),(34,53,41,46),(35,52,42,45)]])

55 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D7A7B7C8A8B14A···14I14J···14AA14AB14AC14AD28A···28I
order122222244447778814···1414···1414141428···28
size112444448565622256562···24···48888···8

55 irreducible representations

dim111111222222224444
type+++++++-+-++
imageC1C2C2C2C4C4D4D4D7Dic7D14Dic7C7⋊D4C7⋊D4C23⋊C4C2≀C4C23⋊Dic7C24⋊Dic7
kernelC24⋊Dic7C28.D4C23⋊Dic7C7×C22≀C2C7×C22⋊C4C23×C14C2×C28C22×C14C22≀C2C22⋊C4C2×D4C24C2×C4C23C14C7C2C1
# reps1111221133336612612

Matrix representation of C24⋊Dic7 in GL6(𝔽113)

100000
010000
001000
000100
000001
000010
,
100000
010000
0019100
00011200
0005501
0005510
,
100000
010000
001000
000100
0010801120
0010800112
,
100000
010000
00112000
00011200
00001120
00000112
,
700000
50970000
001000
007211200
000010
0010800112
,
1081040000
2850000
00580910
00001121
00450550
004112550

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,91,112,55,55,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,108,108,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[7,50,0,0,0,0,0,97,0,0,0,0,0,0,1,72,0,108,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,112],[108,28,0,0,0,0,104,5,0,0,0,0,0,0,58,0,45,4,0,0,0,0,0,112,0,0,91,112,55,55,0,0,0,1,0,0] >;

C24⋊Dic7 in GAP, Magma, Sage, TeX

C_2^4\rtimes {\rm Dic}_7
% in TeX

G:=Group("C2^4:Dic7");
// GroupNames label

G:=SmallGroup(448,93);
// by ID

G=gap.SmallGroup(448,93);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,141,219,675,297,1684,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^14=1,f^2=e^7,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f^-1=a*b*c*d,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽